29 research outputs found

    Jet reconstruction and jet background classification with the ALICE experiment in PbPb collisions at the LHC

    Full text link
    For a quantitative interpretation of reconstructed jet properties in heavy-ion collisions it is paramount to characterize the contribution from the underlying event and the influence of background fluctuations on the jet signal. In addition to the pure number fluctuations, region-to-region correlated background within one event can enhance or deplete locally the level of background and modify the jet energy. We show a first detailed assessment of background effects using different probes embedded into heavy-ion data and quantify their influence on the reconstructed jet spectrum.Comment: 4 pages, 2 figures, Proceedings for the XXII International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Quark Matter 2011, Annec

    The anti-k_t jet clustering algorithm

    Get PDF
    The k_t and Cambridge/Aachen inclusive jet finding algorithms for hadron-hadron collisions can be seen as belonging to a broader class of sequential recombination jet algorithms, parametrised by the power of the energy scale in the distance measure. We examine some properties of a new member of this class, for which the power is negative. This ``anti-k_t'' algorithm essentially behaves like an idealised cone algorithm, in that jets with only soft fragmentation are conical, active and passive areas are equal, the area anomalous dimensions are zero, the non-global logarithms are those of a rigid boundary and the Milan factor is universal. None of these properties hold for existing sequential recombination algorithms, nor for cone algorithms with split--merge steps, such as SISCone. They are however the identifying characteristics of the collinear unsafe plain ``iterative cone'' algorithm, for which the anti-k_t algorithm provides a natural, fast, infrared and collinear safe replacement.Comment: 12 pages, 5 figures. Small changes made for publication. Version published in JHE

    FastJet user manual

    Get PDF
    FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.Comment: 69 pages. FastJet 3 is available from http://fastjet.fr

    Exploring the QCD landscape with high-energy nuclear collisions

    Full text link
    Quantum chromodynamics (QCD) phase diagram is usually plotted as temperature (T) versus the chemical potential associated with the conserved baryon number (\mu_{B}). Two fundamental properties of QCD, related to confinement and chiral symmetry, allows for two corresponding phase transitions when T and \mu_{B} are varied. Theoretically the phase diagram is explored through non-perturbative QCD calculations on lattice. The energy scale for the phase diagram (\Lambda_{QCD} ~ 200 MeV) is such that it can be explored experimentally by colliding nuclei at varying beam energies in the laboratory. In this paper we review some aspects of the QCD phase structure as explored through the experimental studies using high energy nuclear collisions. Specifically, we discuss three observations related to the formation of a strongly coupled plasma of quarks and gluons in the collisions, experimental search for the QCD critical point on the phase diagram and freeze-out properties of the hadronic phase.Comment: Submitted to the New Journal of Physics focus issue "Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas

    Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks

    Get PDF
    In this report we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Following up on the report of the Boost 2010 workshop, we present a new set of benchmark comparisons of substructure techniques, focusing on the set of variables and grooming methods that are collectively known as "top taggers". To facilitate further exploration, we have attempted to collect, harmonise, and publish software implementations of these techniques.Comment: 53 pages, 17 figures. L. Asquith, S. Rappoccio, C. K. Vermilion, editors; v2: minor edits from journal revision
    corecore